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The oscillations of a satellite about a direction fixed
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Abstract

The stability of the plane oscillations of a satellite about the centre of mass in a central Newtonian gravitational field is investigated.
The orbit of the centre of mass is circular and the principal central moments of inertia of the satellite are different. In unperturbed
motion, one of the axes of inertia is perpendicular to the plane of the orbit, while the satellite performs periodic oscillations about
a direction fixed in absolute space. The problem of the stability of these oscillations with respect to plane and spatial perturbations
is investigated.
© 2007 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

Consider the motion of a satellite, a rigid body, about the centre of mass under the action of the gravitational
moments of a central Newtonian gravitational field. The orbit of the centre of mass is assumed to be circular. The
motion of the satellite will be referred to an orbital system of coordinates OXYZ with origin at the centre of mass
of the satellite, the OZ axis is directed along the radius vector of the centre of mass with respect to the attract-
ing centre F, the OX axis is directed along the velocity vector of the centre of mass and OY is directed along
the normal to the orbital plane. The average motion of the centre of mass (the angular velocity of rotation of the
section FO) will be denoted by �0 (Fig. 1). Suppose Oxyz is a system of coordinates rigidly connected to the
satellite. Its axes are directed along the principal central axes of inertia of the satellite, and the moments of iner-
tia corresponding to them will be denoted by A, B and C. We will specify the orientation of the satellite with
respect to the orbital system of coordinates using the Euler angles �, �, �, which are introduced in the usually
way.1

Using the well-known expressions2 for the force function and the kinetic energy of the satellite, we can obtain
the Hamiltonian function H of the problem of the motion of a satellite about the centre of mass. If we denote the
dimensionless momenta p�, p�, p� using the factor A�0 and we take the mean anomaly M = �0t instead of the time t
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Fig. 1.

as the independent variable, we obtain

In addition to the moments of inertia, A, B and C, below we will also use the dimensionless inertial parameters

It follows from the known properties of the axial moments of inertia that |�j| ≤ 3 (j = 1, 2).
The equations of motion allow of particular solutions, corresponding to plane motions of the satellite, when one of

its principal axes of inertia (for example, the Oz axis) is perpendicular to the orbital plane, and the other two move in
the orbital plane (Fig. 2). For plane motions

Fig. 2.
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and the change in the angle � with time is described by the differential equation of a pendulum

(1.1)

We will further assume that �2 > 0 (i.e. A > B). Plane motions of a satellite in a circular orbit were considered
previously in a number of publications (see Refs. 2–7 and the bibliography given in them).

From the point of view of applications, periodic oscillations about a direction fixed in absolute space are of consid-
erable interest. Suppose this direction is specified by the section FP in Fig. 2, where P is the position of the centre of
mass of the satellite at the instant of time taken as the initial one. The solution of Eq. (1.1) of the form

(1.2)

corresponds to oscillations of the satellite about the direction of the section FP. Here and henceforth we will use the
generally accepted notation for elliptic functions and integrals,8 where the modulus k of the elliptic functions and the
inertial parameter �2 are related follows:

(1.3)

Since 0 < �2 ≤ 3, we have 0 < k < 0.969.
Suppose � is the angle between the section FP and the principal axis of inertia of the satellite, corresponding to the

moment of inertia B. Then (Fig. 2) � = M + �. The function � = �(M) is �-periodic in M and can be represented by a
Fourier series of the form

For small k (or, by relation (1.3), for small �2) we have

In the case of a dynamically symmetrical satellite (�2 = 0) � ≡ 0, which corresponds to translational motion of
the satellite in absolute space. For an asymmetrical satellite (�2 �= 0), the amplitude of the oscillations of the satellite
increases as �2 increases. It can be shown that a satellite, whose mass geometry corresponds to a rod (C = A, B = 0,
�2 = 3) has the greatest amplitude of the oscillations (equal to 18◦ 48′). In Fig. 3 we show graphs of the function �(M)
for several values of �2.

The motion (1.2) is Lyapunov unstable with respect to perturbations of the angles �, �, � and of the angular velocities
�̇, �̇, �̇, since the rotation frequencies of the satellite, described by Eq. (1.1), depend on the initial conditions. We have
to consider the orbital stability, i.e. the stability with respect to spatial perturbations �, �, �̇, �̇ and perturbations of the
frequency of plane motions of the satellite (in unperturbed motion (1.2) the frequency is equal to two).

If there is orbital instability, the trajectories of the perturbed and unperturbed motions in six-dimensional space
�, �, �, �̇, �̇, �̇ are close to one another, i.e. the projections of the perturbed trajectory onto the �, �̇ plane differs only
slightly from the phase trajectory of the unperturbed motion and the quantities � − �/2, � − �, �̇, �̇ are small. Note
that in this case the quantities �, �̇ (and also �, �̇), calculated for the same value of M in the perturbed and unperturbed
motions, as a rule, will not be close.

A linear analysis of the equations of the perturbed motion, carried out previously in Refs 4–6, showed that the
oscillations of the satellite investigated can be orbitally stable only when the satellite is “dynamically oblate” along
the Oz axis, perpendicular to the orbital plane in the unperturbed motion, i.e. when C is the greatest of the principal
moments of inertia. Since it was assumed earlier that A > B, it follows that stability is only possible when the following
inequality is satisfied

(1.4)
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Fig. 3.

The linear problem of the stability of the oscillations of a satellite was also investigated earlier in Refs 4–6, when
inequality (1.4) was satisfied, and the regions of stability and instability in the first approximation were indicated.

In this paper we present the results of an investigation of the problem of the orbital stability of the oscillations
of a satellite about a fixed direction in absolute space in a rigorous non-linear formulation. In some cases the results
obtained refine the conclusions reached previously in Ref. 6.

2. The Hamiltonian function for the perturbed motion

To obtain the Hamiltonian function of the perturbed motion we will first make a canonical replacement of variables
(with valency 4A/C) using the formulae

This replacement introduces the variables qj, pj (j = 1, 2), corresponding to spatial perturbations, and simplifies the
Hamiltonian function corresponding to plane unperturbed motion. The Hamiltonian function G(q1, q2, p1, p2, q, p; �1,
�2), represented by a series of the form

(2.1)

corresponds to the equations of motion in the new variables, where Gm is a form of degree m in the spatial perturbations
q1, q2, p1, p2, the coefficients of which depend on the variables q, p and the dimensionless inertial parameters of the
satellite �1, �2, where

(2.2)

(2.3)
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(2.4)

Here we have used the notation

(2.5)

Now, instead of the variables q, p we will introduce the action-angle variables I, w, putting1

(2.6)

where k = k(I) is a function which is the inverse of the function

(2.7)

The function (2.2) in the variables I, w takes the form (the unimportant additive constant is omitted)

For a specified value of �2, the quantity k, found from equality (1.3) or, which is the same thing, from the equality
� = ∂G0/∂I = 2, corresponds to the unperturbed oscillations of the satellite (1.2). The value of the action variable I0
corresponding to this k is found from Eq. (2.7).

The orbital stability of the oscillations of the satellite is equivalent to their stability with respect to the spatial
perturbations qj, pj (j = 1, 2) and the quantity p3, representing the perturbation of the variable I. If we put

in the function (2.1) and expand it in series in powers of qj, pj and p3, we obtain the following expression for the
Hamiltonian function of the perturbed motion

(2.8)

The dots denote the set of terms higher than the fourth power in qj, pj,
√|p3|. The quantity c and the functions G2,

∂G2/∂I, G4 are found from Eqs. (2.3)–(2.7); they are calculated for the unperturbed motion, i.e. when I = I0.

3. Isoenergetic reduction. The conditions for stability and instability

It can be shown,7 that the conditions for orbital stability and instability of the periodic oscillations of a satellite in
the initial autonomous system with three degrees freedom are identical with the corresponding conditions for stability
and instability of the equilibrium position qj = pj = 0 (j = 1, 2) of the reduced non-autonomous system with two degrees
of freedom, describing the perturbed motion at the isoenergetic level G = 0, corresponding to unperturbed periodic
oscillations.
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From the equation G = 0 (see (2.8)) we obtain p3 = −�(q1, q2, p1, p2, p3; �1, �2). The function � can be expanded
in series in powers of qj, pj (j = 1, 2)

(3.1)

where the dots represent the set of terms higher than the fourth power, while �m are forms of degree m in qj, pj, where

The equations of motion at the isoenergetic level G = 0 have a Hamiltonian form. The function � plays the role of
the Hamiltonian function,1 while the coordinate q3, with respect to which the function � is �-periodic, plays the role
of the independent variable.

We will denote by X(q3) the fundamental matrix of the solutions of the linearized equations of the perturbed
motion at the isoenergetic level G = 0. These equations are given by the quadratic part of �2 of the function (3.1). The
characteristic equation of the matrix X(�) is written in the form

(3.2)

The coefficients of this equation are functions of the parameters �1 and �2. If the values of the parameters �1 and �2 are
such that the point with coordinates a1 (�1, �2), a2 (�1, �2) lies outside the region specified by the system of inequalities

(3.3)

then, among the roots of Eq. (3.2) (the multipliers) there is a root with a modulus greater than unity (the linearized
equations have a characteristic exponent with non-zero real part),9 and the oscillations of the satellite are orbitally
unstable irrespective of the nonlinear terms in the equations of the perturbed motion.10 If the point (a1, a2) lies inside
the region (3.3), the characteristic exponents ±i	j (j = 1, 2) are pure imaginary, the multipliers are different, and the
oscillations of the satellite are orbitally stable in the first approximation. For a rigorous solution of the stability problem,
a non-linear analysis of the equations of motion with Hamiltonian function (3.1) is necessary here.

In the non-linear problem we must distinguish between the resonance and non-resonance cases. Suppose the
parameters �1 and �2 are such that there are no fourth-order resonances, i.e. the equality

(3.4)

is not satisfied, where k1 and k2 are integers, the sum of the moduli of which is equal to four, and s is an integer (by
virtue of the �-periodicity of the function (3.1) in q3, this number is even). Then, by an appropriate choice of the
canonically conjugate variables rj, �j (j = 1, 2), the function (3.1) can be reduced11 to the following normal form

(3.5)

where cij are constant coefficients, which depend on the parameters �1 and �2. If

(3.6)

then the oscillations of the satellite are stable for the majority of the initial conditions12 (in the Lebesgue-measure
sense). If the function N(r1, r2) is sign-definite when r1 ≥ 0, r2 ≥ 0, we have formal stability (stability in any finite
approximation).13,14

If the parameters �1 and �2 are such that one of the fourth-order resonance relations (3.4) is obtained, the following
term is added in the normal form of Hamiltonian function (3.5)

where 
k1k2 , �k1k2
are coefficients which depend on �1 and �2. If k2 k2 < 0, we have formal stability (when there are

no other resonances).13 If k1k2 ≥ 0, then when the following inequality is satisfied
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Fig. 4.

we have instability, and for the opposite sign in the last inequality we have stability in the third approxi-
mation.11

The stability and instability conditions formulated above were checked for values of the moments of inertia of the
satellite in the range (1.4). In the plane of the parameters �1, �2 this region represents a set of internal points of an
isosceles right triangle with vertices (0,0), (3,3) and (3.0). For small �2 (when the satellite is close to being dynamically
symmetrical) we carried out an analytical investigation, and for arbitrary values of �2 we used numerical calculations.
The Hamiltonian function of the perturbed motion (3.1) was normalized using the algorithm developed previously.7,15

4. Results

Omitting the details of the calculations necessary to check the stability and instability conditions, we will merely
present the results obtained.

4.1. The linear problem

The triangle of permissible values of the parameters �1 and �2 is split (Fig. 4) by the curve connecting the points
P1(1, 0) and P2(1.385, 1.385) into regions of stability and instability.

For small �2 the boundary curve P1P2 is given by the equation

In the region situated to the right and above curve P1P2 (shown hatched in Fig. 4), the oscillations of the satellite
are unstable. In the unhatched region there is stability in the first approximation.

Note that, for stability, it is necessary that the “dynamic oblateness” of the satellite should not be too great. For a
specified value of �2 the parameter �1 should not exceed a certain critical value of it. For example, if �2 corresponds
to the point P2 of the boundary curve, then for all �1 > 1.385 (i.e. C > 0.462A + B) instability occurs. In particular, the
oscillatins of the satellite with a mass geometry of a rod (C = A, B = 0, �2 = 3) or a plate (C = A + B, �1 = 3) are orbitally
unstable.

We carried out a non-linear analysis for values of the parameters �1 and �2 from the region of stability in the first
approximation. Here, for small �2, we can calculate the pure imaginary characteristic exponents ±i	j (j = 1, 2) using
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the following formulae

where �1 and �2(�1 > �2 > 0) are the roots of the equation

For arbitrary values of �1 and �2, from the region of stability in the first approximation

where a1 and a2 are the coefficients of the characteristic Eq. (3.2).

4.2. The non-linear problem

In the region of stability in the first approximation, there are six curves on which fourth-order resonances occur
(Fig. 4). The resonance curves originate from points of the axis �2 = 0, and for small �0 are given by the equations

(3.7)

The relation between the number of the resonance curve n, its equation and the coefficients An and Bn of approximation
(3.7) is presented below

4.3. Non-resonance values of the parameters

In Fig. 4 the dashed lines indicate two curves on which the quantity D from condition (3.6) vanishes. One of these
curves connects the points S1 (1.212, 1.212) and S2 (1.308, 0.946), while the other connects the origin of coordinates and
the point S3 (1.249, 0.761). If the parameters �1 and �2 do not belong to these curves and to the fourth-order resonance
curves, the oscillations of the satellite are stable for the majority of initial conditions (in the Lebesgue-measure sense).

The curve connecting the origin of coordinates and the point S4 (1.204, 0.549) is shown by the dash-dot curve in
Fig. 4 (the coefficient c20 of the function N(r1, r2) from (3.5) vanishes on this curve). If the parameters �1 and �2 lie
inside the region between this curve and the curve S1S2 and do not fall on the fourth-order resonance curves, we have
formal stability.

4.4. Stability when there is resonance

Stability at points of double resonance R1 (1.030, 0.934), R2 (1.112, 0.871) and R3 (1.146, 0.769), at which the
resonance curve 	1 − 3	2 = 2 is intersected by the curves 	1 + 	2 = 1, 3	1 + 	2 = 4 and 2	1 = 3 respectively, were not
considered.

At points of the curve 	1 − 3	2 = 2, which differ from the points R1, R2 and R3, we have stability in the third
approximation or even formal stability (where there are no resonances above the fourth order).

On the resonance curves 2	2 = −1 and 	1 + 3	2 = 0 the oscillations of the satellite are stable in the third approxi-
mation.

The resonance curve 	1 + 	2 = 1 is split by the points Q1 (1.331, 1.320), Q2 (1.351, 1.345) and R1 into four inter-
vals. On the interval Q1Q2 there is instability, while on the remaining three intervals there is stability in the third
approximation.
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The situation is similar for values of the parameters �1 and �2 lying on the remaining two resonance curves
3	1 + 	2 = 4 and 2	1 = 3. On the curve 3	1 + 	2 = 4 the instability interval is bounded by the points Q3 (1.346, 1.178)
and Q4 (1.355, 1.200), and on the curve 2	1 = 3 it is bounded by the points Q5 (0.520, 0.055) and Q6 (0.536, 0.075).

The intervals of instability obtained are not shown in Fig. 4 in view of their smallness.
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